ИК датчик движения: устройство и принцип срабатывания. Инфракрасные охранные извещатели Потолочные объемные извещатели

  • 02.11.2023

Для целей охраны имущества используется большая номенклатура разнообразных технических средств, среди которых особое место занимают охранные извещатели.

Охранные извещатели - это своего рода «чувствительные рецепторы» системы охранной сигнализации, которые призваны обнаружить преступника в охраняемом помещении, сформировать сигнал тревоги и передать его в охранную систему для принятия мер реагирования.

От того, какие извещатели используются в системе охраны офиса или квартиры, напрямую зависит безопасность имущества клиента, а в отдельных случаях - безопасность его жизни и здоровья.

Действие извещателей основано на использовании различных физических принципов. Можно выделить 2 основных типа извещателей:

1. Пассивные извещатели, которые сами не являются источниками волн различной физической природы (электромагнитных, акустических, пр.).

2. Активные извещатели, являющиеся источниками таких волн.

Очевидные преимущества пассивных извещателей - это их экологическая чистота и низкое энергопотребление. Однако в ряде случаев, в частности для повышения достоверности формируемого извещателем сигнала тревоги и минимизации числа ложных срабатываний, используют извещатели второго типа. При этом в современных извещателях, как правило, активный и пассивный способ работы совмещаются в одном приборе.

По физическому принципу действия извещатели можно подразделить на следующие группы.

Инфракрасные - извещатели, которые обнаруживают тепловое (инфракрасное) излучение человеческого тела и формируют сигнал тревоги в случае, когда источник теплового излучения движется.

Ультразвуковые - извещатели, излучающие ультразвуковые колебания и принимающие сигнал, отраженный от окружающих предметов. Формирование тревожного сигнала происходит в случае возникновения движения в контролируемой зоне.

Радиоволновые - извещатели, излучающие в диапазоне ультракоротких радиоволн. Их принцип работы аналогичен принципу ультразвуковых извещателей.

Барометрические - извещатели, формирующие сигнал тревоги при скачкообразном падении атмосферного давления в охраняемом помещении, которое может произойти в случае открытия двери или окна.

Акустические - извещатели, формирующие сигнал тревоги при регистрации в охраняемой зоне характеристического звука. Чаще всего это звук разбития оконного стекла.

Сейсмические - извещатели, устанавливаемые на стену или другую конструкцию и формирующие сигнал тревоги в случае регистрации в этой конструкции характеристических колебаний, возникающих при попытке разрушения преграды известными способами и инструментами (отбойный молоток, абразивный инструмент, газовый резак, «кислородное копье», взрывчатка, т.п.).

Инерционные - извещатели, в которых сигнал тревоги формируется с использованием инерционных свойств предметов и как правило при механическом воздействии на охраняемый объект, например автомобиль (покачивание, толчки). К группе инерционных относятся вибрационные и ударноконтактные извещатели.

Пьезоэлектрические - различные извещатели, использующие в своей работе пьезоэлектрические материалы, которые обладают свойством наведения разности потенциалов на противоположных сторонах пьезоэлектрического кристалла при его деформации. К пьезоэлектрическим относятся контактные извещатели контроля разбития стекла, извещатели контроля неподвижности установленных (скульптура) или подвешенных (картины) предметов и т.д.

Магнитоконтактные - извещатели, формирующие сигнал тревоги при размыкании геркона вследствие удаления от него магнитного элемента.

Устанавливаются как правило на окна и входные двери.

Электроконтактные - извещатели, которые формируют сигнал тревоги при размыкании электрического контакта. В настоящее время используются как правило в системах тревожной сигнализации и работают в ручном режиме.

Комбинированные - извещатели, которые сочетают в себе два или более физических принципа действия (инфракрасный и ультразвуковой, инфракрасный и радиоволновой, акустический и магнитоконтактный и пр.). Использование двух физических принципов действия зачастую позволяет повысить помехозащищенность извещателя, исключить ложные срабатывания.

Ультразвуковые и радиоволновые извещатели относятся к активному, а все остальные - к пассивному типу извещателей.

Кроме указанных существуют извещатели, использующие иные физические принципы действия: емкостные, индуктивные, электромагнитные и пр.

К изложенному необходимо добавить, что инфракрасные и радиоволновые извещатели могут быть однопозиционными (для контроля движения в определенном объеме) и двухпозиционными (для контроля движения через ограждение). Двухпозиционные извещатели состоят из конструктивно обособленных передатчика и приемника электромагнитных волн и используются для охраны периметров; формирование тревожного сигнала в них происходит при пересечении человеком инфракрасного или радиолуча. В данном случае мы имеем дело с активным инфракрасным извещателем.

В настоящей статье будут рассмотрены принцип работы и конструктивные особенности пассивных инфракрасных извещателей, которые по праву пользуются большой популярностью у потребителей и являются наиболее распространенными.

Пассивные инфракрасные извещатели предназначены для обнаружения человека, находящегося в пределах зоны чувствительности. Основная задача извещателя - обнаружить инфракрасное излучение человеческого тела. Как видно из рисунка 1, тепловое излучение человеческого тела находится в пределах спектрального диапазона электромагнитного излучения с длинами волн 8-12 микрон. Это так называемое равновесное свечение человеческого тела, максимум длины излучения которого полностью определяется температурой и для 37°С соответствует приблизительно 10 микронам. Существует целый ряд физических принципов и соответствующих устройств, которые применяются для регистрации излучения в указанном спектральном диапазоне. Для пассивных инфракрасных извещателей следует использовать чувствительный элемент с оптимальным соотношением чувствительность/стоимость. Таким чувствительным элементом является пироэлектрический фотоэлемент.


Рис. 1. Спектральная зависимость интенсивности свечения: солнца, флюоресцентной лампы, лампы накаливания, человеческого тела и спектра пропускания ряда блокирующих видимый свет фильтров: кремниевый фильтр, просветленный кремниевый фильтр, фильтр с длиной волны среза 5 мкм и фильтр с длиной волны среза 7 мкм.

Явление пироэлектричества состоит в возникновении наведенной разности потенциалов на противоположных сторонах пироэлектрического кристалла при его неравновесном кратковременном нагревании. Со временем электрические заряды из внешних электрических цепей и перераспределение зарядов внутри кристалла приводят к релаксации наведенного потенциала. Из вышесказанного следует:

частота прерывания (Гц).



Рис. 2. Зависимость величины сигнала отклика пироэлемента от частоты прерывания регистрируемого теплового ИК-сигнала.

1. Для эффективной пироэлектрической регистрации теплового излучения необходимо применять прерыватель с оптимальной частотой прерывания излучения около 0,1 Гц (рис. 2). С другой стороны это означает, что если используется безлинзовая конструкция пироэлектрического элемента, он сможет зарегистрировать человека лишь при его входе в пределы диаграммы направленности (рис. 3, 4) и при выходе из нее со скоростью 1 - 10 сантиметров в секунду.



Рис. 3, 4. Форма диаграммы направленности спаренного корпусированного пироэлектрического элемента в горизонтальной (Рис. 3.) и вертикальной (Рис. 4.) плоскостях.

2. Для повышения чувствительности пироэлектрического элемента к величине перепада температур (разница между фоновой температурой и температурой тела человека) необходимо сконструировать его, выдержав минимально возможные размеры, с целью уменьшения количества тепла, необходимого для заданного повышения температуры чувствительного элемента. Размеры чувствительного элемента нельзя чрезмерно уменьшать, так как это приведет к ускорению релаксационных характеристик, что эквивалентно уменьшению чувствительности. Существует оптимальный размер. Минимальная чувствительность обычно находится на уровне 0,1°С для пироэлемента размером 1 х 2 мм и толщиной несколько микрон.

3. Для повышения термостабильности работы извещателя и отсечки влияния медленно меняющейся температуры окружающей среды чувствительный элемент изготавливается в виде парной конструкции электрически встречно включенных элементов, расположенных на общей подложке. Внешний вид чувствительного пироэлемента приведен на рис. 5. Как видно из рисунка, чувствительный элемент изготавливается в типовом корпусе обычного полупроводникового электронного элемента. В корпусе формируется окно из материала, не пропускающего извне излучения с длиной волны менее 1 - 7 микрон в зависимости от типа используемого фильтрующего материала (см. рис. 1). Мировым лидером по производству пироэлектрических элементов является фирма HAMAMATSU (Япония). В Украине пироэлементы производит СКТБ Института физики НАН Украины.


Рис. 5. Внешний вид чувствительного элемента пироэлектрического пассивного ИК-извещателя.

Можно четко сформулировать условия обнаружения человека с помощью инфракрасного извещателя. Инфракрасный извещатель предназначен для обнаружения движущихся объектов с температурой, отличной от фонового значения. Диапазон регистрируемых скоростей перемещения: 0,1 - 1,5 м/сек. Таким образом инфракрасный извещатель не регистрирует неподвижные объекты, даже если их температура превышает уровень фона (неподвижный человек) или если объект с температурой, отличной от фона, перемещается таким образом, что не пересекает чувствительных зон извещателя (например перемещается вдоль чувствительной зоны).

Естественно, что высокая чувствительность инфракрасного извещателя достигается путем применения линзовой системы концентрации входящего излучения (рис. 6). В инфракрасном извещателе линзовая система выполняет две функции.



Рис. 6. Варианты формирования диаграммы направленности ИК-извещателей в зависимости от типа линзовой системы.

Во-первых, линзовая система служит для фокусировки излучения на пироэлектрическом элементе.

Во-вторых, она предназначена для пространственного структурирования чувствительности извещателя. При этом формируются пространственные зоны чувствительности, которые как правило имеют форму «лепестков», а их количество достигает нескольких десятков. Объект обнаруживается при каждом входе и выходе из чувствительных зон.

Обычно различают следующие виды диаграммы чувствительности, которую называют также диаграммой направленности.

1). Стандартная - веерная по азимуту и многоярусная по углу места (рис. 6а).

2). Узконаправленная - одно- или двухлучевая дальнодействующая по азимуту и многоярусная по углу места (рис. 6б).

3). Штороподобная - узконаправленная по азимуту и веероподобная по углу места (рис. 6в).

Существует также круговая диаграмма направленности (в частности, для извещателей, устанавливаемых на потолке помещения), а также ряд других.

Рассмотрим варианты конструктивного исполнения системы формирования диаграммы направленности (рис. 7). Эта оптическая система может быть либо линзовой, либо зеркальной. Изготовление обычной линзовой системы с учетом требования формирования пространственно структурированной диаграммы направленности является дорогостоящей задачей, поэтому обычные линзы в пассивных инфракрасных датчиках не применяются. Применяются так называемые линзы Френеля. В обычной линзе для направленного отклонения света (фокусировки) используется специальная сферическая форма поверхности, материал линзы имеет коэффициент оптического преломления, отличный от коэффициента преломления окружающей среды. В линзе Френеля используется явление дифракции, которое проявляется в частности в отклонении светового луча при прохождении через узкую щель. Линза Френеля изготавливается методом штамповки и поэтому стоит дешево. Недостатком применения линзы Френеля является неизбежная потеря половины энергии излучения в результате его дифракционного отклонения линзой в направлении, отличном от направления на пироэлектрический элемент.


Рис. 7. Конструктивные варианты исполнения охранных пассивных ИК-извещателей: с линзой Френеля и с зеркальной фокусирующей системой.

Зеркальная линза более эффективна по сравнению с линзой Френеля. Она изготавливается из пластической массы методом штамповки с последующим покрытием структурированной поверхности светоотражающим покрытием, не изменяющим своих свойств со временем (до 10 лет). Наилучшим покрытием является золото. Отсюда и более высокая, приблизительно в два раза, стоимость пассивных инфракрасных извещателей с зеркальной системой по сравнению с линзовой. Кроме того извещатели с зеркальной системой имеют большие габариты по сравнению с извещателями, оснащенными линзами Френеля.

Зачем применяют более дорогие извещатели с зеркальной системой концентрации входящего излучения? Важнейшей характеристикой извещателя является его чувствительность. Чувствительность практически одинакова в перерасчете на единицу площади входного окна извещателя. Это, в частности, означает, что если проектируют пассивный инфракрасный извещатель с повышенной чувствительностью, то вынуждены увеличивать размер зоны концентрации излучения - площадь входного окна, а, значит, и сам извещатель (максимальная чувствительность современных пассивных ИК-извещателей позволяет производить обнаружение человека на расстоянии до 100 метров). Если положить наличие потерь полезного сигнала за счет несовершенства линзы, то необходимо повысить коэффициент усиления электронной схемы обработки электрического сигнала, формируемого чувствительным элементом. При условии одинаковой чувствительности коэффициент усиления электрической схемы в зеркальном извещателе в два раза меньше, чем в извещателе с линзой Френеля. Это обозначает, что в извещателях с линзой Френеля выше вероятность ложного срабатывания, вызванная помехами в электронной схеме.

Еще раз вернемся к оптической схеме извещателя. Кроме линзовой системы и оптического «отрезающего» фильтра, установленного непосредственно в корпусе чувствительного элемента, для уменьшения ложных срабатываний, вызванных всевозможными источниками излучения, применяют различные оптические фильтрующие элементы («белый» фильтр, «черное» зеркало и т.п.), задача которых минимизировать попадание постороннего оптического излучения на поверхность пиро-электрического элемента.

Входное окно большинства ИК-извещателей выполнено в виде «белого» фильтра. Этот фильтр изготовлен из материала, рассеивающего видимый свет, но в то же время не влияющего на распространение инфракрасного излучения.

В извещателях с зеркальной системой концентрации входящего излучения дополнительный поглощающий фильтр размещается непосредственно на зеркале. Такое зеркало отлично отражает ИК-излучение и эффективно поглощает видимую часть спектра. Внешне оно имеет черный цвет, поскольку не отражает видимый свет, и поэтому называется «черным» зеркалом. Использование дополнительного, по отношению к непосредственно размещаемому на корпусе светочувствительного элемента, поглощающего фильтра позволяет уменьшить тепловую нагрузку на чувствительный элемент от поглощенной энергии падающего на него излучения, поскольку дополнительный поглощающий фильтр и чувствительный пироэлемент пространственно разнесены.

Совершенствуются и линзы Френеля. Прежде всего путем придания линзе сферической формы, минимизирующей аберрации по сравнению со стандартной цилиндрической формой. Кроме этого применяется дополнительное структурирование диаграммы направленности в вертикальной плоскости за счет мультифокусной геометрии линзы: в вертикальном направлении линза разделена на три сектора, каждый из которых независимо собирает излучение на один и тот же чувствительный элемент.

Весьма актуальной является проблема противодействия физическому экранированию извещателя, которое сводится к установке перед ним экрана, перекрывающего его «поле зрения» (так называемое «маскирование»). Технические средства противодействия маскированию составляют систему антимаскирования извещателя. Некоторые извещатели оснащаются встроенными ИК- светодиодами. В случае, если в зоне обнаружения извещателя, а следовательно в зоне действия светодиодов, возникает преграда, то отражение излучения светодиодов от преграды воспринимается извещателем как сигнал тревоги. Более того, периодически (в существующих моделях - один раз в 5 часов) происходит самотестирование извещателя на предмет наличия отраженного излучения ИК-светодиодов. В том случае, если при самотестировании на выходе электрической схемы не появится необходимый сигнал, то срабатывает схема генерации сигнала тревоги. Извещатели с функциями антимаскирования и самотестирования устанавливаются на наиболее ответственных объектах, в частности там, где возможно противодействие работе системы охраны.

Еще один путь повышения помехоустойчивости извещателя - это применение квадратичного чувствительного пироэлемента совместно с использованием микропроцессорной обработки сигнала. Разные фирмы решают проблему создания квадратичного элемента различным образом. Например фирма «OPTEX» применяет два обычных сдвоенных пироэлемента, расположенных рядом. Основная задача системы - выделить и «отсеять» события, вызванные одновременной засветкой обоих пироэлементов (например свет фар) или электрической помехой.

Фирма «ADEMCO» применяет специальную конструкцию счетверенного пироприемника, где четыре чувствительных элемента расположены в одном корпусе. При этом встречно включены пироэлементы, расположенные как в горизонтальной плоскости, так и в вертикальной. Такой извещатель не будет реагировать на мелких животных (мыши, крысы), которые зачастую бывают в складских помещениях и являются одной из причин ложных срабатываний (рис. 8). Использование разнополярного подключения чувствительных элементов в таком извещателе делает невозможным «шумовое» ложное срабатывавние.



Рис. 8. Работа многоканальной системы селекции шумовых импульсов на примере работы квадратичного охранного пассивного ИК-извещателя.

Фирма «ADEMCO» настолько уверена в совершенстве разработанного ею квадратичного извещателя, что объявила о выплате премии, если обладатель извещателя зафиксирует его ложное срабатывание.

Еще одной мерой предосторожности является применение проводящих пленочных покрытий, наносимых на внутреннюю поверхность входного окна для противодействия радиочастотным помехам.

Эффективным методом повышения помехоустойчивости извещателей является применение так называемой «двойной технологии», которая заключается в использовании комбинированного извещателя, реализующего пассивный инфракрасный и активный радиоволновой (иногда - ультразвуковой) принципы действия.

Радиоволновой (ультразвуковой) блок фиксирует наличие допплеровского сдвига в частотном спектре отраженного радиосигнала (ультразвука), обусловленного движением объекта. Применение таких извещателей наиболее эффективно при последующей микропроцессорной обработке поступающих сигналов. Эти извещатели не рекомендуется применять в помещениях, где находятся люди, так как излучение оказывает вредное влияние на здоровье.

Извещатели «двойной технологии» используются при охране помещений, в которых имеются небольшие домашние животные: кошки, собаки, - а также при наличии в охраняемом помещении периодически включаемых неподвижных теплоизлучающих устройств: факсимильный аппарат, калорифер, вентилятор и т.п.

Мы рассмотрели основы работы и конструкцию пассивных инфракрасных охранных извещателей. В целом все конструктивные ухищрения, применяемые теми или иными фирмами, имеют одну цель - уменьшить вероятность ложного срабатывания извещателя, поскольку ложное срабатывание ведет к неоправданным затратам на реагирование по тревоге, а также влечет моральный ущерб для владельца охраняемого имущества.

Извещатели постоянно совершенствуются. На современном этапе основными направлениями совершенствования извещателей является повышение их чувствительности, уменьшение числа ложных срабатываний, дифференциация подвижных объектов по признаку санкционированного или несанкци-онированного пребывания в зоне обнаружения.

Как источник электрического сигнала, каждый чувствительный пироэлемент является также источником случайных шумовых сигналов. Поэтому актуальной является задача минимизации флуктуационных помех, решаемая схемотехническим путем. Используются разные методы борьбы с шумами.

Во-первых, в извещателе устанавливаются электронные дискриминаторы входного сигнала по верхнему и нижнему уровню, что минимизирует частоту появления помехи (рис. 9).



Рис. 9. Пороговая система двухстороннего ограничения уровня шумового сигнала охранного пассивного ИК-извещателя.

Во-вторых, применяется режим синхронного учета импульсов, поступающих по обоим оптическим каналам. Причем схема составляется таким образом, что полезный оптический сигнал на входе приводит к появлению положительного электрического импульса по одному каналу и отрицательного по другому. На выходе применяется схема вычитания. Если источником сигнала является шумовой электрический сигнал - он будет идентичен для двух каналов и на выходе результирующий сигнал будет отсутствовать. Если источником сигнала является оптический сигнал, то выходной сигнал будет суммироваться.

В третьих, применяется метод счета импульсов. Сущность этого метода состоит в том, что одиночный сигнал регистрации объекта не приводит к формированию сигнала тревоги, а устанавливает извещатель в так называемое «предтревожное состояние». Если в течении определенного времени (на практике это - 20 секунд) повторно не поступит сигнал регистрации объекта, происходит сброс предтревожного состояния извещателя (рис. 10).



Рис. 10. Работа системы счетчика импульсов.

Как правило все извещатели требуют подключения электрического питания 12 В постоянного тока. Ток потребления типового извещателя находится в пределах 15 - 40 мА. Сигнал тревоги формируется и передается на охранную централь посредством выходного реле с нормально замкнутыми контактами.

Промышленностью выпускаются извещатели для установки в помещении, а также на открытых площадках; последние имеют соответствующее климатическое исполнение. Типовой срок службы пассивных инфракрасных извещателей - 5 - 6 лет.

Одним из наиболее востребованных элементов систем безопасности является объёмный пассивный ИК извещатель. Объясняется это весьма широким спектром применения таких приспособлений. Они могут быть использованы как для контроля внутреннего объема помещений, так и для организации охраны периметра. Компания «Синтез Безопасности» предлагает вам купить такое оборудование у нас. Мы гарантируем высокое качество, а также то, что цена продукции будет вполне доступной.

Как работают пассивные ИК извещатели

Функционирование таких приспособлений основано на регистрации изменений инфракрасного температурного фона исходящих из разнообразных нагретых объектов и, в первую очередь, живых тел. В зависимости от принципа действия датчики делятся на активные и пассивные. У последних потоки инфракрасной энергии поступают через линзу чувствительный пироэлемент.

Срабатывают пассивные ИК извещатели в том случае, если при обследовании секторов контролируемой области происходит обнаружение температурных перепадов. Они указывают на наличие движения в зоне работы датчика. Существует несколько типов такого оборудования, различающегося способностью фиксировать определенную скорость движения.

После того, как встроенный микропроцессор проанализировал поступившие данные, происходит размыкание или замыкание сети контактов. Это приводит к формированию тревожного извещения, поступающего на пульт охраны. В зависимости от типа зоны обнаружения выделяют:

  • линейный;
  • поверхностный;
  • объёмный пассивный ИК извещатель.

Какие преимущества имеет объемный ИК извещатель пассивный

Это оборудование считается одним из самых эффективных и имеет целый ряд достоинств по сравнению с поверхностными и линейными моделями. Причина этого заключается в том, что при сканировании помещений приспособление проводит их изучение не только в вертикальном направлении (от пола до потолка), но и в горизонтальной плоскости. В результате надежность системы существенно возрастает.

Объемные датчики относятся к пассивным устройствам. Чаще всего их используют для обеспечения безопасности внутри помещений. При проектировании систем с использованием такого оборудования, необходимо учитывать тот факт, что для устройств этого типа любое препятствие является непрозрачным. В результате появляются своеобразные «мертвые» зоны. Эта особенность не обязательно расценивается как недостаток. Благодаря ей можно избежать реакции на движущийся объект за пределами охраняемой площади.

Если вы выбираете такие приспособления, компания «Синтез Безопасности» рекомендует вам учитывать ряд параметров. К ним можно отнести:

  • угол раскрытия зоны обнаружения;
  • дальность работы датчика.

Причем следует учесть, что параметр дальности оборудования указывается по главной оси. По боковым осям этот показатель будет ниже. Кроме того, при настройке системы необходимо также правильно указать температурный диапазон. Он существенно различается в отапливаемых и неотапливаемых помещениях, например. Грамотный выбор вам поможет сделать компания «Синтез Безопасности». Обращайтесь к нам, излагайте свои пожелания, а остальное мы возьмем на себя.

У нас вы сможете купить ИК пассивные по низкой цене - в каталоге 40 шт., сравнивайте, изучайте характеристики.

В настоящее время пассивные оптико-электронные инфракрасные (ИК ) извещатели занимают лидирующие позиции при выборе защиты помещений от несанкционированного вторжения на объектах охраны. Эстетичный внешний вид, простота монтажа, настройки и обслуживания обеспечивают им приоритетное значение по сравнению с другими средствами обнаружения.

к.т.н., доцент В.Е. Коротких

Пассивные оптико-электронные инфракрасные (ИК) извещатели (в народе их часто называют датчиками движения) обнаруживают факт проникновения человека в защищаемую (контролируемую) часть пространства, формируют сигнал тревожного извещения и путем размыкания контактов исполнительного реле (реле ПЦН) передают сигнал «тревога» на средства оповещения. В качестве средств оповещения могут использоваться устройства оконечные (УО) систем передачи извещений (СПИ), или прибор приемно-контрольный охранно-пожарный (ППКОП). В свою очередь, вышеназванные устройства (УО или ППКОП) по различным каналам передачи данных транслируют полученное тревожное извещение на пульт централизованного наблюдения (ПЦН) или местный пульт охраны.
Принцип работы пассивных оптико-электронных ИК извещателей основан на восприятии изменения уровня инфракрасного излучения температурного фона, источниками которого являются тело человека или мелких животных, а также всевозможных предметов, находящихся в поле их зрения.

Инфракрасное излучение – это тепло, которое излучается всеми нагретыми телами. В пассивных оптико-электронных ИК извещателях инфракрасное излучение попадает на линзу Френеля, после чего фокусируется на чувствительном пироэлементе, расположенном на оптической оси линзы (рис. 1).

Пассивные ИК извещатели принимают потоки инфракрасной энергии от объектов и преобразуются пироприемником в электрический сигнал, который поступает через усилитель и схему обработки сигнала на вход формирователя тревожного извещения (рис. 1).



Рис. 1. Основные элементы, входящие в состав пассивных инфракрасных извещателей

С более подробной информацией о принципе действия пассивных оптико-электронных инфракрасных извещателей можно ознакомиться в электронной 3D книге « Технические средства охранной сигнализации», а приобрести ее можно .

В зависимости от исполнения линзы Френеля, пассивные оптико-электронные ИК извещатели обладают различными геометрическими размерами контролируемого пространства и могут быть как с объемной зоной обнаружения, так и с поверхностной или линейной. Дальность действия таких извещателей лежит в пределах диапазона от 5 до 20 м. Внешний вид этих извещателей представлен на рис. 2.

Рис. 2. Внешний вид пассивных инфракрасных извещателей

Пассивные оптико-электронные ИК извещатели обладают одним замечательным преимуществом по сравнению с другими типами средств обнаружения. Это простота монтажа, настройки и технического обслуживания. Извещатели данного типа могут устанавливаться как на плоской поверхности несущей стены, так и в углу помещения. Существуют извещатели, которые устанавливаются на потолке.

Грамотный выбор и тактически верное применение таких извещателей являются залогом надежной работы устройства, да и всей системы охраны в целом!

Монтаж извещателей

Извещатели с объемной зоной обнаружения (рис. 3, а, б), как правило, устанавливаются в углу помещения на высоте 2,2 - 2,5 м. В этом случае они равномерно охватывают объем защищаемого помещения.

а) б) в)

Рис. 3. Диаграммы пассивных ИК извещателей с объемными зонами обнаружения

Установка извещателей на потолке предпочтительнее в помещениях с высокими потолками от 2,4 до 3,6 м. Такие извещатели имеют более плотную зону обнаружения (рис. 3, в), а на их работу в меньшей степени влияют имеющиеся предметы мебели.

Извещатели с поверхностной зоной обнаружения (рис. 4) применяются для охраны периметра, например, некапитальных стен, дверных или оконных проемов, а также могут использоваться для ограничения подхода к каким либо ценностям. Зона обнаружения таких устройств должна быть направлена, как вариант, вдоль стены с проемами. Некоторые извещатели могут устанавливаться непосредственно над проемом.

Рис. 4. Диаграмма пассивных ИК извещателей с поверхностной зоной обнаружения

Извещатели с линейной зоной обнаружения (рис. 5) применяются для охраны длинных и узких коридоров.

Рис. 5. Диаграмма пассивных ИК извещателей с линейной зоной обнаружения

Помехи и ложные срабатывания

При использовании пассивных оптико-электронных ИК извещателей необходимо иметь в виду возможность ложных срабатываний, которые происходят из-за помех различного типа.

Тепловые помехи обусловлены нагреванием температурного фона при воздействии на него солнечного излучения, конвективных потоков воздуха от работы радиаторов систем отопления, кондиционеров, сквозняков.

Электромагнитные помехи вызываются наводками от источников электро и радиоизлучений на отдельные элементы электронной части извещателя.

Посторонние помехи связаны с перемещением в зоне обнаружения извещателя мелких животны х (собаки, кошки, птицы).
Рассмотрим более детально все факторы, влияющие на нормальную работоспособность пассивных оптико-электронных ИК извещателей.

Тепловые помехи

Это наиболее опасный фактор, который характеризуется изменением температурного фона окружающей среды. Воздействие солнечного излучения вызывает локальное повышение температуры отдельных участков стен помещения.

Конвективные помехи обусловлены воздействием перемещающихся потоков воздуха, например, от сквозняков при открытой форточке, щелей в оконных проемах, а также при работе бытовых отопительных приборов - радиаторов и кондиционеров.

Электромагнитные помехи

Возникают при включении любых источников электро и радиоизлучения, таких как измерительной и бытовой аппаратуры, освещения, электродвигателей, радиопередающих устройств. Сильные помехи могут создаваться и от разрядов молний.

Посторонние помехи

Своеобразным источником помех в пассивных оптико-электронных ИК извещателях могут являться мелкие насекомые, такие как тараканы, мухи, осы. В случае их перемещения непосредственно по линзе Френеля, может возникнуть ложное срабатывание извещателя данного типа. Также опасность представляют и так называемые домашние муравьи, которые могут попасть внутрь извещателя и ползать непосредственно по пироэлементу.

Ошибки монтажа

Особое место в некорректной или неправильной работе пассивных оптико-электронных ИК извещателей занимают ошибки монтажа при выполнении работ по установке данных типов устройств. Обратим внимание на яркие примеры неправильного размещения ИК извещателей, чтобы избежать подобного на практике.

На рисунках 6, а; 7, а и 8, а отображена правильная, корректная установка извещателей. И устанавливать их нужно только так и никак иначе!

На рисунках 6, б, в; 7, б, в и 8, б, в представлен вариант неправильной установки пассивных оптико-электронных ИК извещателей. При такой установке возможны пропуски реальных вторжений в охраняемые помещения без выдачи сигналов «тревога».

а) б) в)

Рис. 6. Варианты корректной и не правильной установки ИК извещателей

а) б) в)

Рис. 7. Варианты корректной и не правильной установки ИК извещателей

1.3.1. Пассивные оптико-электронные инфракрасные (ИК) датчики движения

Для создания системы я решил подобрать модули, которые бы подходили для создания системы и осуществляли слежение за периметром.


Я выбрал следующие компоненты:
  • пассивный инфракрасный датчик движения;
  • GSM модуль;
  • сирена.

Рассмотрим их поподробней.

В 21-м веке все знакомы с ИК-датчиками – они открывают двери в аэропортах и магазинах когда вы подходите к двери. Они же обнаруживают движение и подают сигнал тревоги в охранной сигнализации.

В настоящее время пассивные оптико-электронные инфракрасные (ИК) извещатели занимают лидирующие позиции при выборе защиты помещений от несанкционированного вторжения на объектах охраны. Эстетичный внешний вид, простота монтажа, настройки и обслуживания зачастую обеспечивают им приоритет по сравнению с другими средствами обнаружения.

Пассивные оптико-электронные инфракрасные (ИК) извещатели (их часто называют датчиками движения или PIR датчиками ) обнаруживают факт проникновения человека в защищаемую (контролируемую) часть пространства, формируют сигнал тревожного извещения и путем размыкания контактов исполнительного реле (реле ПЦН) передают сигнал «тревога » на средства оповещения.

В качестве средств оповещения могут использоваться устройства оконечные (УО) систем передачи извещений (СПИ) или прибор приемно-контрольный охранно-пожарный (ППКОП). В свою очередь, вышеназванные устройства (УО или ППКОП) по различным каналам передачи данных транслируют полученное тревожное извещение на пульт централизованного наблюдения (ПЦН) или местный пульт охраны.


Принцип работы пассивных оптико-электронных ИК-извещателей основан на восприятии изменения уровня инфракрасного излучения температурного фона, источниками которого являются тело человека или мелких животных, а также всевозможных предметов, находящихся в поле их зрения.

Сенсор , чувствительный к инфракрасному излучению в диапазоне 5–15 мкм, обнаруживает тепловое излучение от человеческого тела. Именно в этот диапазон попадает максимум излучения от тел при температуре 20–40 градусов Цельсия.

Чем сильнее нагрет предмет, тем больше он излучает.
инфракрасные прожекторы подсветки видеокамер, лучевые (двухпозиционные) детекторы «пересечения луча » и пульты управления телевизором работают в диапазоне длин волн короче 1 мкм, видимая человеком область спектра находится в районе 0,45–0,65 мкм.

Пассивными датчики такого типа называются, потому что сами они ничего не излучают, только воспринимают тепловое излучение от человеческого тела.

Проблема состоит в том, что любой предмет при температуре даже 0º С излучает довольно много в ИК-диапазоне. Хуже того, излучает сам детектор – его корпус и даже материал чувствительного элемента.

Поэтому первые такие детекторы работали, если только сам детектор охладить, скажем, до жидкого азота (-196º С). Такие детекторы весьма не практичны в повседневной жизни.

То есть важно, что излучение от человека фокусируется только на одну из площадок, и притом оно изменяется.

Наиболее надежно детектор срабатывает, если изображение человека попадет сначала на одну площадку, сигнал от нее станет больше, чем от второй, а затем человек передвинется, так что его изображение попадет теперь на вторую площадку и сигнал у второй вырастет, а у первой упадет.

Такие достаточно быстрые изменения разности сигналов вполне можно обнаружить даже на фоне огромного и непостоянного сигнала, вызванного всеми другими окружающими предметами (и особенно солнечным светом).

Рис. 1.


В пассивных оптико-электронных ИК-извещателях инфракрасное тепловое излучение попадает на линзу Френеля, после чего фокусируется на чувствительном пироэлементе, расположенном на оптической оси линзы.

Пассивные ИК-извещатели принимают потоки инфракрасной энергии от объектов и преобразуются пироприемником в электрический сигнал, который поступает через усилитель и схему обработки сигнала на вход формирователя тревожного извещения (рис. 1 ).

Для того чтобы нарушитель был обнаружен ИК-пассивным датчиком, необходимо выполнение следующих условий:

  • нарушитель должен пересечь в поперечном направлении луч зоны чувствительности датчика;
  • движение нарушителя должно происходить в определенном интервале скоростей;
  • чувствительность датчика должна быть достаточной для регистрации разницы температур поверхности тела нарушителя (с учетом влияния его одежды) и фона (стены, пол).
  • оптической системы, формирующей диаграмму направленности датчика и определяющей форму и вид пространственной зоны чувствительности;
  • пироприемника, регистрирующего тепловое излучение человека;
  • блока обработки сигналов пироприемника, выделяющего сигналы, обусловленные движущимся человеком, на фоне помех естественного и искусственного происхождения.

Рис. 2.

В зависимости от исполнения линзы Френеля пассивные оптико-электронные ИК-извещатели обладают различными геометрическими размерами контролируемого пространства и могут быть как с объемной зоной обнаружения, так и с поверхностной или линейной.

Дальность действия таких извещателей лежит в диапазоне от 5 до 20 м. Внешний вид этих извещателей представлен на рис. 2 .

Детекторы движения это основа системы безопасности, их тип и технические характеристики определяют уровень ее эффективность и сложность несанкционированного проникновения.

Наиболее распространенными детекторами, применяемыми в системах сигнализации, являются пассивные инфракрасные датчики движения.

Их основная функция – объемный контроль охраняемого пространства всего помещения.

Принцип и условия срабатывания


Устройство регистрирует динамику изменения теплового излучения объекта и общего фона. Мониторинг осуществляется за определенный промежуток времени.

Для срабатывания необходимо совмещение определенных условий. Во-первых, изменение положения объекта в пространстве, контролируемом детектором.

Во-вторых, траектория должна проходить перпендикулярно направлению ИК-излучения, генерируемого устройством.

В-третьих, расстояние от источника излучения должно быть достаточным для его уровня восприятия, то есть он должен определить температурную разницу между объектом (с учетом одежды) и окружающим фоном.

Чувствительность


Основной сканирующий элемент устройства — пироприемник, имеет сдвоенную структуру, и поэтому в плоскости излучения происходит парное расщепление каждого луча.

Исходя из особенностей строения различных моделей инфракрасных датчиков движения, зоны чувствительности различных моделей могут иметь разную конфигурацию. Это могут быть точечные лучи, направленные в небольшой угловой сегмент, формирующие отдаленную точку детекции.

Несколько таких лучей расположенных, горизонтальной или вертикальной плоскости формируют «вертикальный барьер» или «сканирующую поверхность», она может быть горизонтальной или иметь наклон.

Одиночный широкий луч, испускаемый в горизонтальной, или вертикальной плоскости формирует «сканирующий занавес».

Кроме того, интенсивность генерируемого излучения влияет на протяженность сканируемой зоны срабатывания. Обзорный сектор может составлять от 30 0 до 180 0 для настенных детекторов и круговой – 360 0 для потолочных моделей. Так же возможна регуляция количества лучей, и угла их наклона, до 90 0 .

Такое разнообразие обусловлено требованиями к эксплуатации в различных условиях и высоком уровне эффективности, который должен обеспечивать равномерную чувствительность детектора по всему охраняемому объему срабатывания.

Оптические элементы


Чувствительность детектора зависит от процента перекрытия площади луча. Соответственно на расстоянии 15-20 м для выявления объекта размером с человека необходим луч шириной не более 100.

Но при приближении к устройству уровень чувствительности будет возрастать, и с расстояния 5 м тревогу может поднять обычная мышь.

Для распределения равномерности чувствительных зон оптические элементы формируют несколько секторов излучения с различной шириной и направлением под разными углами. Само устройство, как правило, крепиться немного выше человеческого роста.

Следовательно, весь объем зоны обнаружения, разбит на несколько секторов, с различной степенью чувствительности лучей, подобранных таким образом, чтобы общая чувствительность устройства не изменялась от удаления или приближения к нему.

Проблема равномерности чувствительности пассивных ИК-датчиков движения, решается с помощью оптических рассеивателей.

Такая система может быть настроена более точно, что дает возможность увеличения ее чувствительности на дальних дистанциях до 60%. Кроме того, сегментная структура позволяет легче настроить защиту ближней «саботажной» зоны.

Использование триплексной технологии в зеркалах позволяет использовать инфракрасные датчики движения в помещениях, где есть домашние питомцы.

Современные высокоэффективные модели используют комбинацию обеих систем, где линза Френеля контролирует среднюю зону, а устройства зеркальной оптики дальние подходы и саботажную зону.

Пироприемник и помехи


Пироэлектрический преобразователь – это полупроводниковое устройство, которое способно регистрировать разницу в температурах и преобразовать ее в электрический импульс.

В таких датчиках используются пары, а в некоторых моделях две пары пироэлектрических элементов. Это позволяет снизить количество ложных срабатываний, которые вызывает простое повышение температуры в помещении.

В парных пироприемниках срабатывание происходит только когда пересекаются один из лучей, обработка происходит по дифференциальному алгоритму, вычитая сигнал одного пироэлемента из сигнала другого.

Основные виды помех, которые могут вызвать ложное срабатывание встраиваемых ИК датчиков движения:

  • насекомые, попавшие внутрь или на корпус датчика;
  • домашние животные;
  • вибрации и сотрясения;
  • радио и электромагнитные помехи;
  • направленные и яркие источники света;
  • кондиционеры, батареи, тепловые завесы и другое климатическое оборудование;
  • частичное отражение ИК-лучей от внутренней поверхности устройства;
  • нагревание внутренних деталей детектора.

Блок обработки


Аналоговое, цифровое или комбинированное устройство, обеспечивающее обработку поступающих от прироприемника сигналов с целью выделения импульса, вызванного нарушителем, из общего потока помех.

Алгоритм обработки основан на анализе формы, длительности и величины сигнала. Сигнал от человеческой фигуры является симметричным и двухполярным, в отличие от шумовых несимметричных сигналов.

Величина сигнала – основной параметр, по которому происходит анализ поступающего импульса.

В недорогих моделях БО анализируют только его, сравнивая с пороговым показателем и подсчитывая количество срабатываний. После превышения определенного числа за единицу времени включается сигнал тревоги.

Такой метод несовершенен и приводит к большому количеству ложных срабатываний от вибраций или электромагнитных помех.

Если настроить низкую чувствительность, то в датчиках с зоной контроля типа «одиночная завеса» может не произойти срабатывания вообще, если будет пересечен всего один луч.

В более дорогих датчиках дополнительно анализируется полярность и симметрия формы поступающего сигнала.

Методы защиты детекторов движения от помех


Специальный светофильтрующий пластик внешних линз позволяет защитить пироэлемент от белого света, для защиты от насекомых между пироприемным элементом и линзой монтируют герметичную камеру.

Так же практически все современные модели оборудованы реле вскрытия, которое сигнализирует о взломе устройства.

Типичная бытовая модель со средним функционалом


NV500 компании PARADOX

Оптика – гибридная цилиндро-сферическая линза с сегментами линз Френеля с углом обзора 1020.

Диаграмма направленности рассчитана на обеспечение равномерной чувствительности по всему контролируемому объему. Super Creep Zone – функция контроля саботажной зоны. Цифровая блокировка детекции животных до 16 кг.

Двухуровневый подсчет импульсов по алгоритму APSP. Автокомпенсация температуры. Автоматическая цифровая регулировка чувствительности 5ти уровней. Защита от вскрытия – твердотельное реле.

Датчики такого типа можно использовать не только в , но и в устройстве автоматического включения освещения, и системы раннего оповещения и т. д.